| 1. | A new robust method for computing the fundamental matrix 投影三维重建中基础矩阵的鲁棒性估计方法 |
| 2. | In addition , it does not need the computation of the projective depth and consequently the fundamental matrix 它无需估计投影深度,避免了基础矩阵计算的复杂性问题,因而也不受相机特殊运动的限制。 |
| 3. | We give a constraint for conic correspondence only from fundamental matrix , and then we design an aigorithm for conic correspondence based on the constraint 我们仅从基本矩阵出发,给出了二次曲线匹配的约束,并设计出匹配算法,该算法是线性的。 |
| 4. | Fundamental matrix and camera self - calibration are two key concepts , and model parameter estimation and implement of 3d reconstruction are main items as well 在三维重建中,基础矩阵和相机自定标是两个核心概念,模型参数估计和三维重建实现是主要研究内容。 |
| 5. | The experiments show that the method proposed by us is more robust , comparing to the method of estimating projective depths based on fundamental matrix and epipolar points . 2 实验证明:相对于基于基本矩阵和极点方法来计算射影重构,本论文提出的算法对噪声具有更好的鲁棒性。 |
| 6. | A method to estimate image corresponding and fundamental matrices simultaneously is presented , which reduces wrong correspondings and improves accuracy of estimated fundamental matrices 为了减少错误匹配和提高基本矩阵估计的精度,本文提出了同时计算特征点的匹配和估计基本矩阵的新方法。 |
| 7. | To recover scene structure from motion , firstly the relation between sequential images must be set up through three steps as feature point extraction , corresponding matching and estimation of fundamental matrices 要恢复场景三维形状,首先必须建立序列图像之间的联系。其中包括特征点的提取,特征点的匹配以及基本矩阵的估计。 |
| 8. | There are many key techniques in 3d reconstruction from uncalibrated image sequences , which are feature matching , fundamental matrix estimation , camera self - calibration , dense stereo matching and euclidean reconstruction 基于非定标图像序列三维重建研究涉及的关键技术有:特征匹配、基础矩阵估计、稠密匹配、相机自定标、欧氏重建等。 |
| 9. | In this paper we discuss if two cameras have the same calibration matrix how to use some knowledge of scene ' s to stratified reconstruction from a pair of views . the key to the projective reconstruction is compute the fundamental matrix 本文研究在仅有两幅图像的条件下,如果摄像机内参数保持不变,如何利用场景中的结构信息对空间物体分层重构。 |
| 10. | We analyze the essence of affine reconstruction and prove the sufficient conditions that a reversible matrix can be an infinite plane homography matrix and we can not uniquely decide an infinite plane homography matrix from fundamental matrix 详细分析了仿射重构的本质,证明了可逆矩阵为无穷远平面单应矩阵的充分条件,以及从基本矩阵无法唯一确定无穷远平面单应矩阵。 |